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ABSTRACT 

AggPro predicts baseball statistics by utilizing a weighted average of predictions provided by several oth-
er statistics projection systems.  The aggregate projection that is generated is more accurate than any of 
the constituent systems individually.  We explored the granularity at which weights should be assigned by 
considering four possibilities: a single weight for each projection system, one weight per category per sys-
tem, one weight per player per system, and one weight per player per category per system.  We found that 
assigning one weight per category per system provides better results than the other options.  Additionally, 
we projected raw statistics directly and compared the results to projecting rate statistics scaled by pre-
dicted player usage.  We found that predicting rate statistics and scaling by predicted player usage pro-
duces better results.  We also discuss implementation challenges that we faced in producing the AggPro 
projections. 

1 INTRODUCTION 

Statistics projection is an important problem for sports teams, especially when selecting players in a draft 
or deciding which players to offer a contract�� ���	� �	����� ����	��� ��� !�
	��"�� ��	!� ��� ��	� future perfor-
mance of its athletes.  Statistics projection is also important to the millions of people who play fantasy 
sports, which is a game for spectators where the set of real athletes in a sport is partitioned among the fan-
tasy sports participants (typically through a draft or auction).  The winner in fantasy sports is the person 
who selected athletes that accumulate the best statistics during the following year (according to some pre-
determined criteria) (Ballard 2001). 
 AggPro is an aggregate projection system.  There are many different approaches to statistics projec-
tion, but AggPro does not project statistics directly.  Instead, it utilizes existing projections and combines 
them in a way that produces a projection that is more accurate than any of the constituent projections.  
Previous work has demonstrated that such aggregation can provide an improvement (Gore, Snapp, and 
Highley 2009). In this paper, we ask whether greater improvement can be gained by assigning separate 
weights on a per-player basis and/or a per-category basis.  The motivation for exploring the granularity of 
the weights is the idea that some projection systems may be better predictors for a particular type of play-
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er or a particular statistic.  We found that assigning weights on a per-category (but not per-player) basis 
performed best. 
 Some statistics are almost entirely a function of how the player is used and how healthy the player is 
(e.g. innings pitched and plate appearances in baseball).  These are qualitatively different from statistics 
that indicate the skill of a player.  In addition to projecting raw statistics directly, we used a second ap-
proach where we treated usage statistics and skill-based statistics differently; skill-based statistics were 
treated as rate statistics.  We projected the rate statistics and scaled by the projected player usage to pro-
duce raw statistics.  We compare this result to the results of projecting the raw statistics directly.  Our 
evaluation shows that projecting rate statistics and scaling by projected player usage, used along with per-
category weight sets, provides a significant improvement over the other projections we evaluated: the 
constituent projection systems and AggPro projections formed exploring the other weight set granularities 
(including our prior work). 
 We also discuss optimization efforts that we used to improve the speed of the program. The optimiza-
tion used to find the best weighted averages is similar to finding the best values for flexible points in 
coercible simulations (Waziruddin, Reynolds, and Brogan 2003). 

2 BACKGROUND 

Research efforts in the areas of baseball, modeling and simulation, and artificial intelligence have all con-
tributed to AggPro. We review these related works here.  

2.1 Projection Systems 

Many different methods exist for projecting the performance of Major League Baseball (MLB) players in 
a variety of statistical categories for an upcoming MLB season. These projection systems include: Brad 
Null (Baseball Calculus 2010), Bill James Handbook (Baseball Info Solution 2010), CAIRO (Replace-
ment Level Yankees Weblog 2010), CBS (CBS Sports 2010), CHONE (Baseball Projection.com 2010), 
Marcel (Marcel 2010), PECOTA (Baseball Prospectus 2010), and ZiPS (Baseball Think Factory 2010).  
Although there are a large number of systems and they are widely available, there has been relatively little 
evaluation on the accuracy of the predictions these systems produce. In prior work, it has been demon-
strated that AggPro can successfully improve on existing projections by identifying a beneficial weighting 
of constituent systems (Gore, Snapp, and Highley 2009). 

2.2 �������	
���
����������
��
����������
��	���	

In 2007 Nate Silver performed an evaluation of the on-base percentage plus slugging (OPS) statistic pro-
jection from eight 2007 MLB projection systems (Baseball Prospectus 2007). Silver's work uses several 
evaluation metrics including average error, RMSE and Pearson's correlation coefficient.  We employ each 
of these to evaluate AggPro. However, Silver also offers a metric based on performing a regression analy-
sis on all the systems for the past year. The metric ranks the quality of the information provided by the 
systems. This metric is similar to the weights AggPro calculates to form projections for an upcoming 
year. 

2.3 Combining Data 
The problem of combining data to produce new insights or provide better accuracy is common.  Such data 
fusion is an important problem in wireless sensor networks (Nakamura, Loureiro, and Frery 2007), infor-
mation retrieval (Efron 2009), and determining the degree of membership in a fuzzy database (Cunning-
ham 2006), among others. 
 The strategy of applying different weights to different predictions from effective projection systems 
has been used successfully by the designers of the winning solution for the NetFlix prize, BellKor Prag-
matic Chaos by AT&T labs (Bell, Korin, and Volinsky 2007). In October 2006, Netflix released a dataset 
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of anonymous movie ratings and issued a challenge to researchers: develop a system that could beat the 
accuracy of its recommendation system, Cinematch. A grand prize, known as the NetFlix Prize, of 
$1,000,000 was awarded to the first system to beat Cinematch by 10%. The BellKor Pragmatic Chaos 
prediction system was the winning solution, with 10.05% improvement over Cinematch. 
 BellKor employs 107 different models of varying approaches to generate user ratings for a particular 
��#�	����	���	""*�
��++"�	����"��	�
�8	��������	������!	"���+
	!�����������
	��	�������
	���	�+
	!�������
for the movie (Bell, Korin, and Volinsky 2007). AggPro applies this strategy to projecting the perfor-
mance for MLB players. 
 Horowitz explored weights for college football rankings.  He argued that predisposition to a single set 
of weights for aggregated ratings is a bad idea (Horowitz 2004), and that it is appropriate to calculate a 
new set of weights whenever the experts receive new information.   

2.4 COERCE 

When constructing a model, abstractions inevitably must be selected in order to reduce complexity, im-
prove performance, or provide estimations for unknown information. When developing coercible simula-
tions a subject matter expert (SME) identifies a set of abstraction opportunities and alternatives for each 
model abstraction. A flexible point of a simulation reflects one model abstraction opportunity and the cor-
responding bindings for the flexible point reflect abstraction alternatives. The developer and the SME use 
optimization (automatic function minimization) and/or manual modification to find new bindings for the 
selected flexible points. The SME may interrupt this step if it becomes apparent that a satisfactory set of 
bindings will not be found. This process repeats until the new requirement is met (Waziruddin, Reynolds, 
and Brogan 2003). The goal of AggPro is not to adapt existing models to new requirements.  However, 
the use of optimization to identify the set of weights that minimize error from actual player performance 
statistics is similar to the process of finding the best values for flexible points in COERCE, which is a si-
mulation technology designed to aid in the development of coercible simulations.  T�	������
���+
��
�	x-
perience with COERCE was a major part of the motivation for AggPro. 

3 EXPERIMENTAL METHODOLOGY 

First, we collected the projections from five different systems for the years 2007, 2008 and 2009 and con-
verted them to a common format. The projection systems that we used were Bill James (B), Chone (CH), 
Marcel (M), Pecota (P), and Zips (Z). Next, for each year we identified the players that were common 
among all five systems. The player list for each year is available at AggPro (2010). Then we identified the 
statistical categories that were common among all five projection systems. The hitter categories common 
to the five systems are: At Bats, Plate Appearances, Hits, Runs, Doubles, Triples, Home Runs, RBIs, Sto-
len Bases, Walks, and Strikeouts. The pitcher categories common to the five systems are: Innings Pitched, 
Earned Runs, Strikeouts, Walks, and Hits. These sets of players and statistics represent the largest possi-
ble set that was common to all the systems. 

AggPro generated projections for this set of common players and statistics by using weighted sums of 
the projections from the five constituent systems.  The primary purpose of this study was to identify the 
best granularity to use when assigning weights.  A weight set consists of one weight for each constituent 
projection system, where each weight xi is constrained such that 0 � xi �1 and xi �1� . We examined 
four different approaches to granularity. 

1. One weight set is used for all projections, regardless of the player or statistical category.  This 
is the approach used in (Gore, Snapp, and Highley 2009). 

2. A different weight set is used for each statistical category.  For each statistical category, the 
corresponding weight set is used to project that statistic for all players.  We expected this ap-
proach to work well if some constituent projection systems were consistently good at predict-
ing certain statistics while other projection systems were better at predicting other statistics. 
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statistics for that player.  We expected this approach to work well if some constituent projec-
tion systems were consistently good at predicting statistics for certain types of players while 
other projection systems were better for different types of players. 

4. For each combination of player and statistical category, a different weight set is generated 
and used.  This is a combination of the approaches in numbers 2 and 3, and we expected that 
it would work under a combination of the circumstances described in numbers 2 and 3. 

In each case, we computed weight sets that minimized the root mean square error for the statistics in 
question during one year, and used those weight sets to predict statistics for the following year.  (We had 
converted statistics for years 2007, 2008, and 2009 to our standard format, and we generated projections 
for 2008 and 2009.)  We generated statistics using each of the four approaches above and compared the 
resulting aggregate projections with the constituent projection systems.   

3.1 Raw Statistics versus Rate Statistics 

All of the statistics identified above are raw accumulation statistics.  They do not include computed statis-
tics such as batting average or earned run average.  Because all of the statistics are raw accumulation sta-
tistics, it is possible that some constituent projection systems may be heavily weighted not because they 
do a good job of predicting how well a player will perform, but only because they predict player usage 
well (e.g. whether the player will be in the starting lineup, whether the player will be injured, or whether a 
pitcher will be a starter or a reliever).   

In order to separate the projection of player usage from the projection of player quality, we introduced 
a second approach.  We defined rate statistics corresponding to each of the raw statistics identified above.  
For the hitters, we defined the rate statistics by dividing each of the raw statistical categories by Plate Ap-
pearances, where Plate Appearances is computed as At-Bats plus Walks.  For the pitchers, we defined the 
rate statistics by dividing each of the raw categories by Innings Pitched.  AggPro generated weight sets 
using each of the four approaches to granularity described above, but minimized the root mean square er-
ror over the rate statistics instead of the raw statistics.  To generate the AggPro projections using rate sta-
tistics, we used the weight sets to predict the rate statistics, and then multiplied each predicted rate statis-
tic by the predicted value for Plate Appearances or Innings Pitched, as appropriate.  The resulting raw 
statistics were compared with the other AggPro projections and the constituent projection systems. 

In total, AggPro generated eight sets of projections, based on the four approaches to weight set granu-
larity.  Each approach was used first to project raw statistics directly, as well as to project rate statistics 
which were then scaled. 

4 OPTIMIZATION 

Recall that previous research with AggPro only identified one weight set that was applied to all common 
statistical categories among the five projection systems (Gore, Snapp, and Highley 2009). The weight set 
minimized the RMSE of the aggregate projections from t�	�+
	#������	�
��������������when applied to the 
projections of the five systems for the previous year. The weight set was identified through a brute force 
search across all weight sets, up to two decimal places.  (Recall that a weight set consists of weights, 
where each weight xi is constrained such that 0 � xi �1 and xi �1� .)  This approach requires expo-
nential time in terms of the number of constituent projection systems, making it computationally ineffi-
cient (Gore, Snapp, and Highley 2009).  Our new approach remedies this inefficiency.  The approach 
views each weight, xi, as a variable in a linear equation and each projection of a constituent system in 
each statistical category as the coefficient of the respective variable. For each player and each statistical 
category a linear equation is formed using two matrices, x and C.  The matrix x contains the variables of 
the linear equation. Each of these variables is the weight for each of the xi constituent projection systems 
where i � B,CH,M,P  or Z . The matrix C contains the coefficients of each variable. Each of the coeffi-
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cients, Ciq , is the constituent projection for the player/category q in projection system i.  Each linear equ-
ation formed from C and x is set equal to the actual performance data, d. The actual performance data for 
player/category q is dq . Figure 1 illustrates the structure of each of these matrices. 
 These three matrices (C, x and d) form a system of linear equations, where the values within the ma-
trices depends on which of the four options for weight set granularity is used. The system of linear equa-
tions is then solved using least squares linear regression, which only requires polynomial time in terms of 
the number of constituent projection systems (m) and the number of players within the projection systems 
(n), specifically, )),(max( 3mnO (Matlab 2009). We ensure the same constraints, 0 � xi �1 and 

xi �1� , as in our previous approach (Gore, Snapp, and Highley 2009).  
 

 

 
Figure 1: The matrices required to solve the linear system of equations (Matlab 2009). 

 
For Option 1 of AggPro, where one set of weights is applied to all statistical categories for all players 

in the constituent projection systems, one linear system of equations was solved. C contained an entry for 
all players in all categories from the constituent projection system. Due to the required symmetry, d con-
tained an entry for all players in all statistical categories from the actual performance data. 

For Option 2 of AggPro, where a different weight set is applied to each statistical category (but is 
used for all players in the constituent projection systems), L  linear systems of equations were solved, 
where L is the set of statistical categories common to the constituent projection systems, and L  is the 
number of statistical categories common to the constituent projection systems. Given a statistical category 
Lk , C contained an entry for all players for Lk . Due to the required symmetry, each d contained an entry 
for all players for statistical category Lk  from the actual performance data. 

For Option 3 of AggPro, where a different weight set is applied to each player (but is used for all sta-
tistical categories in the constituent projection systems), G  linear systems of equations were solved, 
where G is the set of players common in the constituent projection systems, and G  is the number of 
players common to all constituent projection systems. Given a player G j , C contained an entry for the 
projections for player G j   from all the constituent projection systems for all statistical categories. Due to 
the required symmetry, each d contained an entry for all statistical categories for player G j  from the ac-
tual performance data. 

For Option 4 of AggPro, where a different weight set is applied to each player for each statistical cat-
egory in the constituent projection systems, G  * L  linear systems of equations were solved. Given a 
player G j  and a statistical category Lk , C contained an entry for the projections for player G j  for the sta-
tistical category Lk  from all constituent projection systems. Due to the required symmetry, each d con-
tained an entry for player G j  for the statistical category Lk  from the actual performance data. 
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5 EVALUATION 

AggPro generated eight sets of projections.  There are four approaches to weight set granularity, and each 
approach was used to first predict raw statistics directly.  These four projections are listed as aggPro_raw1 
through aggPro_raw4 in the tables below.  Next, each weight set granularity was used to generate a pro-
jection by predicting rate statistics and scaling by predicted player usage.  These four projections are 
listed as aggPro_rate1 through aggPro_rate4 in the tables below. When these eight sets of projections are 
evaluated along with the five constituent projection systems, there are thirteen projections in total.   

We compared all of the projections using the following criteria: average error, the Pearson correlation 
coefficient, and RMSE.  We separated the statistical categories into two groups: fifteen raw statistics and 
thirteen rate statistics. There are two fewer rate statistics because we do not include rate statistics for Plate 
Appearances or Innings Pitched, since those two are the basis for computing rate statistics.  (It is not use-
ful to compute Plate Appearances per Plate Appearance or Innings Pitched per Inning Pitched.) 

For each statistical category, we ranked the thirteen projections according to each criterion.  Using 
each criterion in turn, we found the average ranking for each projection across all of the raw statistical 
���	��
�	�� QX=#	
��	�[�8\�]	"�8^���!���
���� �""� �>� ��	� 
��	� ����������"� ���	��
�	�� QX=#	
��	�[��	\�]e-
"�8^���`�
�X=#	
��	�[��	\���!�X=#	
��	�[�8�\�"�8	
����]	
���
	�]	��	
�8������]	������	�]	���+����]"	�
and 13 being the worst possible since there are thirteen projection systems.   

For each evaluation criterion, we counted the number of statistical categories for which each projec-
�����8����!	���>�	!������	�]	���+
	!����
���X[�8�`�
��\������	����]	
��>�
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��	������������Q����of the 13) for 
which the projector was the best predictor.  In the case of ties for first place, the tied projections were both 
given credit. 

Finally, we counted the number of statistical categories for which each projection ranked in the top 
half of the t��
�		��+
�?	�������QX[�8���+�{�">\���!�X[��	���+�{�">\�>�
���	�
�8��������������!�
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We examined projections for the 28 statistical categories for the years 2008 and 2009, comparing the 
projections using three evaluation criteria, thus yielding a total of 168 evaluations of the projections.  (The 
168 evaluations are not independent.) Overall, we found that aggPro_rate2 performed the best.  The 
aggPro_rate2 projection uses a separate weight set for each statistical category, and makes its predictions 
by predicting rate statistics and scaling them by predicted player usage.  Both the predicted rate statistics 
and the predicted player usage are based on the constituent projection systems. The aggPro_rate2 projec-
tion produced the best results for 43 out of 90 comparisons for raw statistics, and for 31 out of 78 compar-
isons for rate statistics.  The aggPro_rate2 projections performed well more consistently than any of the 
other projection systems: it ranked in the top half of projections for 88 of the 90 comparisons for raw sta-
tistics, and for 75 out of 78 comparisons for rate statistics.  

AggPro options 3 and 4, where weight sets are derived for each player individually, consistently per-
form worse than AggPro options 1 and 2, where all players use the same weight sets.  Depending on the 
year and evaluation criteria, options 3 and 4 sometimes rank worse than some of the constituent projec-
tion systems.  It is reasonable to expect that a weight set targeted to a specific player may identify consti-
tuent projection systems that are particularly adept at predicting statistics for that specific player.  It is al-
so reasonable to expect such a weight set to perform poorly since far less information is taken into 
consideration.  Our results indicate that the latter factor is more important than the former.  This is at least 
true for our approach, which only looks at the previous year to determine how to apply the weight sets.  
Looking at more history may make per-player weights more useful. 

By separating raw statistics and rate statistics, it becomes apparent that the billJames projections do a 
very good job at projecting player usage.  The billJames projection was determined to be the best of the 
five constituent projection systems in (Gore, Snapp and Highley 2009).  However, the chone and pecota 
projections do just as well at predicting rate statistics, and were given correspondingly higher weights 
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when AggPro was projecting rate statistics.  The weights for player usage use a heavy weight for the bill-
James projections, similar to our original findings. 

Although we find aggPro_rate2 to be the best projector in our experiments, it is not the winner by a 
large margin.  In (Gore, Snapp, and Highley 2009), the aggPro_raw1 projection was shown to be an im-
provement over the best constituent projection system by 0.7% to 7.2%, depending on the year and evalu-
ation criterion.  According to most of the evaluation criteria we employed, the aggPro_rate2 projection 
presented here is a further improvement.  For the 2009 projections, aggPro_rate2 improved the average 
error by 0.7%, the RMSE by 0.5%, and the Pearson correlation coefficient by 0.1% over aggPro_raw1.  
For the 2008 projections, aggPro_rate2 improved the average error by 1.9% and the RMSE by 1.2% over 
aggPro_raw1.  However, for 2008 the Pearson correlation coefficient for aggPro_rate2 was 0.5% worse 
than that for aggPro_raw1. 

5.1 Average Error 

Table 1: Average Error Evaluation of the thirteen projections for 2008. 

Average Error: 2008 
Projection Average Raw Raw First Raw Top Half Average Rate Rate First Rate Top Half 
billJames 8.3 0 3 9.1 1 3 
Chone 12.6 0 0 5.3 1 8 
Marcel 9.1 0 5 9.6 1 3 
Pecota 8.1 0 6 4.4 0 11 
Zips 12.1 0 0 7.4 2 4 
aggPro_rate1 3.7 2 14 4.8 0 9 
aggPro_rate2 1.8 9 15 3.0 6 12 
aggPro_rate3 7.9 0 3 8.3 0 3 
aggPro_rate4 6.2 1 9 6.5 0 8 
aggPro_raw1 3.5 0 14 5.3 1 8 
aggPro_raw2 2.4 5 15 6.2 1 7 
aggPro_raw3 7.7 0 3 8.4 0 2 
aggPro_raw4 7.1 0 4 12.8 0 0 

 

Table 2: Average Error Evaluation of the thirteen projections for 2009. 

Average Error: 2009 
Projection Average Raw Raw First Raw Top Half Average Rate Rate First Rate Top Half 
billJames 8.4 0 5 9.7 0 2 
chone 12.3 0 0 5.5 2 9 
marcel 10.5 0 1 10.0 0 2 
pecota 8.0 0 5 5.7 0 10 
zips 12.3 0 0 9.2 0 2 
aggPro_rate1 2.9 3 14 3.9 0 11 
aggPro_rate2 2.6 7 14 2.1 7 13 
aggPro_rate3 7.0 1 4 6.6 0 5 
aggPro_rate4 6.9 0 7 8.8 0 1 
aggPro_raw1 2.8 3 14 4.3 0 11 
aggPro_raw2 2.9 3 15 5.9 4 5 
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aggPro_raw3 7.2 0 4 6.5 0 7 
aggPro_raw4 6.7 0 8 12.7 0 0 

 

5.2 Correlation Coefficient 
 

Table 3: Correlation Coefficient Evaluation of the thirteen projections for 2008. 

Correlation Coefficient: 2008 
Projection Average Raw Raw First Raw Top Half Average Rate Rate First Rate Top Half 
billJames 5.7 0 11 5.8 0 9 
chone 12.3 0 0 12.3 0 0 
marcel 10.5 0 0 10.5 0 0 
pecota 10.6 0 1 10.6 0 1 
zips 12.2 0 0 12.2 0 0 
aggPro_rate1 2.4 5 15 2.6 3 13 
aggPro_rate2 2.8 4 15 2.8 4 13 
aggPro_rate3 7.8 0 3 7.8 0 3 
aggPro_rate4 6.5 0 9 6.6 0 7 
aggPro_raw1 2.1 5 15 2.3 3 13 
aggPro_raw2 2.5 3 15 2.4 3 13 
aggPro_raw3 7.5 0 3 7.5 0 3 
aggPro_raw4 7.4 0 5 7.6 0 3 

 
 

Table 4: Correlation Coefficient Evaluation of the thirteen projections for 2009. 

Correlation Coefficient: 2009 
Projection Average Raw Raw First Raw Top Half Average Rate Rate First Rate Top Half 
billJames 4.9 2 13 4.9 2 11 
chone 10.9 1 1 10.7 1 1 
marcel 10.9 0 0 11.1 0 0 
pecota 9.1 0 5 9.3 0 4 
zips 11.4 0 0 11.2 0 0 
aggPro_rate1 3.3 2 14 3.4 1 12 
aggPro_rate2 2.6 7 15 2.7 6 13 
aggPro_rate3 7.6 0 1 7.6 0 1 
aggPro_rate4 8.1 0 6 8.1 0 5 
aggPro_raw1 2.9 1 15 3.0 0 13 
aggPro_raw2 3.1 4 15 3.2 3 13 
aggPro_raw3 7.5 0 2 7.5 0 2 
aggPro_raw4 8.2 0 4 8.2 0 3 
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5.3 RMSE 
 

Table 5: RMSE Evaluation of the thirteen projections for 2008. 

RMSE: 2008 
Projection Average Raw Raw First Raw Top Half Average Rate Rate First Rate Top Half 
billJames 9.8 0 1 10.2 0 1 
chone 12.5 0 0 5.9 2 8 
marcel 7.7 0 5 10.0 0 1 
pecota 8.1 0 6 3.1 4 12 
zips 12.4 0 0 7.8 1 3 
aggPro_rate1 3.5 3 15 4.8 2 10 
aggPro_rate2 1.9 8 15 3.2 2 11 
aggPro_rate3 7.5 0 2 7.6 0 5 
aggPro_rate4 6.5 0 8 6.5 1 6 
aggPro_raw1 3.5 1 15 5.1 0 10 
aggPro_raw2 2.3 5 15 6.5 1 6 
aggPro_raw3 7.6 0 2 7.5 0 5 
aggPro_raw4 7.2 0 6 12.8 0 0 

 
 

Table 6: RMSE Evaluation of the thirteen projections for 2009. 

RMSE: 2009 
Projection Average Raw Raw First Raw Top Half Average Rate Rate First Rate Top Half 
billJames 10.0 0 1 10.3 0 0 
chone 12.1 0 0 5.0 2 9 
marcel 9.1 0 1 10.2 0 2 
pecota 8.3 0 5 4.7 0 9 
zips 12.5 0 0 8.8 0 3 
aggPro_rate1 3.1 2 15 4.1 0 11 
aggPro_rate2 2.5 8 14 2.4 6 13 
aggPro_rate3 6.7 0 7 7.0 0 5 
aggPro_rate4 7.4 0 7 8.2 0 3 
aggPro_raw1 2.6 3 15 4.4 2 11 
aggPro_raw2 2.1 4 15 6.2 3 7 
aggPro_raw3 6.7 0 7 6.8 0 5 
aggPro_raw4 7.5 0 5 12.8 0 0 
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5.4 Improvement Over Previous Projections 

Table 7: Percent Improvement of aggPro_rate2 vs. aggProraw for 2008 and 2009. 

Percent Improvement: aggPro_rate2 vs. aggPro_raw1 

Category Average Error RMSE 
Correlation  
Coefficient 

 2008 2009 2008 2009 2008 2009 
AB 0.3% 0.9% -0.4% 0.2% -0.2% 0.7% 
H(H) 2.1% 1.6% 1.5% 1.4% 0.1% 0.8% 
R 0.8% 0.7% 0.8% -0.2% 0.3% 0.4% 
D 2.5% 1.7% 2.5% 1.6% -0.1% 0.3% 
T -2.8% 1.4% -4.5% 0.5% -4.1% 0.6% 
HR 0.6% 0.5% 1.8% -0.7% 0.3% -0.4% 
RBI 0.7% 0.9% 1.7% 0.6% 0.6% 0.6% 
SB 4.7% -0.6% 3.0% -2.3% 0.0% -0.7% 
BB(H) 1.3% -0.2% 1.0% 0.2% 1.0% 0.7% 
K(H) -1.2% -2.8% -2.1% -3.4% -0.8% -1.8% 
IP 1.5% -2.2% 4.3% 0.0% -0.6% -0.2% 
ER 0.0% 2.3% 1.4% 1.4% -1.3% 0.7% 
K(P) 3.3% 0.2% 5.4% -0.2% -0.5% -0.5% 
BB(P) 1.8% 1.9% 4.9% 2.0% -0.9% 0.5% 
H(P) 1.4% 0.0% 2.7% 1.0% -1.3% 0.2% 
H(H)/PA 4.5% 3.0% 2.5% 3.3% 0.1% 0.8% 
R/PA -0.1% 0.2% 0.1% 0.8% 0.3% 0.4% 
D/PA 3.2% 1.5% 2.0% 1.7% -0.1% 0.3% 
T/PA -1.6% 2.5% -0.7% 0.5% -4.1% 0.6% 
HR/PA 0.5% 0.0% 0.1% -0.6% 0.3% -0.4% 
RBI/PA 0.7% 1.9% 1.6% 1.4% 0.6% 0.6% 
SB/PA 1.9% 1.1% -1.1% -2.8% 0.0% -0.7% 
BB(H)/PA 1.2% 1.4% 0.5% 1.3% 1.0% 0.7% 
K(H)/PA 3.4% -0.6% 3.1% 2.1% -0.8% -1.8% 
ER/IP 1.7% 1.3% 1.5% 2.6% -1.3% 0.7% 
K(P)/IP 2.0% 0.7% 1.0% -1.1% -0.5% -0.5% 
BB(P)/IP -0.3% -0.1% 0.2% 0.7% -0.9% 0.5% 
H(P)/IP -0.8% -0.1% -0.1% 1.9% -1.3% 0.2% 
AVERAGE 1.2% 0.7% 1.2% 0.5% -0.5% 0.1% 

 

6 CONCLUSION AND FUTURE WORK 

We have presented an algorithm for aggregate projections of sports statistics that provides results that  
are better than any of the constituent projections.  We explored the question of weight set granularity and 
determined that examining each statistical category individually can yield improved results, but examin-
ing each player individually can cause a loss of accuracy, since a far smaller dataset is used in generating  
the weight set.  Because we generated many different weight sets, it became necessary to find a more effi-
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cient process to identify the weight sets.  We have described the optimization technique we employed, 
and have enabled AggPro to work with a large number of constituent projection systems. 

In future work, we plan to explore utilizing the AggPro projections for simulated fantasy baseball 
drafts in combination with empirical Average Draft Position (ADP) data to create an overall draft value 
metric for each projected player.   
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